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LElTER TO THE EDITOR 

Conformal invariance and the phase transition of a spin chain 
with three-spin interaction 

M KolbtS and K A PensonS 
t Laboratoire de physique de la matiere condensee, Ecole Polytechnique, 91 128 Palaiseau 
Cedex, France 
'$ Institut fur  Theorie .der kondensierten Materie, Freie Universitat Berlin, Arnimallee 14, 
1000 Berlin 33, West Germany 

Received 11 June 1986 

Abstract. The ground-state properties of a quantum spin chain with three-spin couplings 
are investigated using finite-size calculations. The results are compared with the predictions 
of conformal invariance for finite systems at the critical point. The critical exponents T~ 
and qs of energy density and spin correlation functions are calculated and estimated to 
be qE= 1.30 and ~ ~ ~ 0 . 2 5 .  The results suggest that this model is conformally invariant 
with a central charge very close to or equal to one. 

Recently, models of systems with multibody interactions have received considerable 
attention. It is known by now that n-body interactions lead to critical behaviour with 
n-dependent universality classes. In two dimensions ( 2 ~ )  cases in point are the exactly 
solvable Baxter ( n  = 2,4) (Baxter 1972) and the Baxter-Wu ( n  = 3) (Baxter and Wu 
1973) models. 

To study phase transitions systematically as a function of the multiplicity n of 
interactions a spin model with anisotropic n-spin couplings has been introduced 
(Penson et a1 1982, Turban 1982). Here we consider the I D  quantum version (Suzuki 
1976) of this model with the Hamiltonian 

L L 

1 = 1  / = 1  
H = -J,, s;+~s;+*.. . sf+,, - h S; 

where sx and s z  are components of spin-f operators. Self-duality determines the value 
of the critical ratio h /  J,, exactly, ( h /  Jn)=  = 2-("-'). The energy and the transverse field 
h are measured in units of J,, and we furthermore set J,, = 1. 

Since the introduction of this model there have been several extensions, including 
the use of Potts variables, coupling through other spin components and different and 
competing multiplicities (Turban and Debierre 1982, Penson 1984, Turban 1985, Kolb 
and Penson 1985). For n = 3 there have been attempts to determine the character of 
the transition. It is generally agreed (Penson et a1 1982a, b, Turban 1982, Debierre 
and Turban 1983, Maritan et a1 1984) that there is a second-order phase transition but 
there is no consensus as yet concerning the precise values of the critical exponents. 
For example, the estimates of the exponent v vary in the range 0.72-0.77 depending 
on the method used (Igloi et a1 1983, 1986). The purpose of this letter is to study the 
finite-size behaviour of this model in the light of the recently developed apparatus 
based on conformal invariance (Luck 1982a, b, c, Cardy 1986). The question of 
conformal invariance is particularly intriguing for the present model as the ordered 
ground state of its 2~ classical version is anisotropic in space. 
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The developments relating conformal invariance and finite systems started with a 
remarkably simple formula linking finite-size amplitudes to critical exponents. The 
correlation function exponent 7 of an infinite 2~ classical isotropic system at criticality 
and the amplitude A of the inverse correlation length, t-' = A/ L, of the same system 
in a finite strip of width L are related through (Pichard and Sarma 1981, Luck 1982a, 
b, c, Derrida and de Skze 1982, Nightingale and Blote 1983, Cardy 1984a, b) 

It has been shown that for quantum models (Penson and Kolb 1984) somewhat weaker 
relations hold. For different operators X and Y the ratios of their respective amplitudes 
Ax and AY are universal and equal to the ratios of their exponents 7x and 7y 

For quantum systems the inverse correlation length is equal to the corresponding gap 
in the energy spectrum, 6;' = E l ,  -E,, a = X ,  Y. Eo is the ground-state energy. In 
actual calculations one uses for X and Y the spin and energy density operators, 
respectively (Penson and Kolb 1984, Alcaraz et a1 1985, Burkhardt and Guim 1985, 
Guimaraes and Drugowich de Felicio 1986, von Gehlen et a1 1986, von Gehlen and 
Rittenberg 1986). For quantum systems equation (3) replaces equation (2) because 
the Hamiltonian can be multiplied by an arbitrary overall factor without changing its 
critical properties. This ambiguity is removed if the quantum system is conformally 
invariant. The spectrum of single-particle excitations then has the form E ( k ) =  
E(  k )  - Eo = v,k with a sound velocity U, = 1 (Blote et a1 1986). In this case equation 
(2) holds for quantum systems as well. Alternatively, when U,# 1 equation (2) takes 
the form 

A = .rrT. ( 2 )  

AXlAY = T X I V Y .  (3) 

A = q u , .  (4) 
Conformal invariance actually tells us much more than this (Cardy 1986). The 

structure of higher-lying energy levels is given by the formula (Cardy 1986, Rittenberg 
1986) 

E,( k )  = ( 2 a / L ) ( x ,  + r + xb, + r')u5 

k = ( 2 . r r / L ) ( x U + r - x & - r ' )  

r, r '=O,  1,2, .  . . 
(5) 

for periodic boundary conditions where, in our case, x ,  = xb, = 7,/4. a labels the 
different symmetries of the excitations-here we distinguish between spin- ( vS)- and 
energy- ( vE)-type excitations. Equation (4) follows from equation ( 5 )  setting r = R' = 0. 
The xu are anomalous dimensions of irreducible representations of an operator algebra. 
For unitary theories the characteristic central charge or conformal anomaly c, as well 
as the x u ,  is quantised ( c  < 1) (Belavin et a1 1984, Friedan er al 1984, Huse 1984). 
Additional consequences of the conformal invariance have recently been analysed 
(Itzykson er a1 1986, Saleur 1986). 

Now we want to apply these concepts to the Hamiltonian system given by equation 
(1 ). The transition separates a disordered phase from an ordered phase with a fourfold 
degenerate ground state. The strategy is to calculate critical exponents by conventional 
finite-size methods and compare the results with the predictions of the amplitude 
exponent relations, equation (4). Equation (51, furthermore, provides a number of 
consistency tests. 

We have diagonalised the Hamiltonian matrix of equation (1) numerically using 
standard methods for periodically bounded chains up to length L = 15. The Lanczos 
tridiagonalisation scheme has been used and the symmetries of the Hamiltonian 
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were explored. The Hamiltonian commutes with the translation operator T (which 
shifts the chain by one lattice spacing) and with the parity operators P,= 
nf;(=" s:,,,+,-~s;,+~-,,~= 1,2 ,3 ,  which satisfy P,P,+, = Pf+2 (modulo 3). These parities 
do not commute with the translation operator, but the projection operator P =  
(1 + Pl + P2 + P3)/4 does. Accordingly, the states can be classified by their wavevector 
and into either singlet or triplet states. The triplet states have wavevectors k and 
k f 2 ~ / 3 .  This can be seen directly from applying the operator P* = X?=, e*2TifPf to 
a state with a given wavevector k, Ik)=X;=, ezTik'T'(0). P'lk) yields-if it does not 
vanish-a vector of wavevector k*2T/3 .  For finite systems the classification in a 
singlet subspace and a triplet subspace only holds for L = 3, 6, 9, . . . . Therefore we 
restrict our study to these values. 

We first use the phenomenological renormalisation group (PRG) (Barber 1983) to 
determine the energy density correlation function exponent qE = 4 - 21 v from v (the 
correlation length exponent) and then the spin correlation function exponent vs from 
vE and the amplitude ratios, equation (3). The excitations of energy type are singlets 
(as is the ground state with wavevector k=0) and the excitations of spin type are 
triplets. The PRG is performed between sizes L and L - 3  for L = 6 ,  9, 12, 15. The 
amplitude ratios for vs are estimated from size L at the fixed point of the PRG. In 
figure 1 the calculated values for vE and vs are plotted as a function of 1/L. They 
yield-if extrapolated to L +  -the estimates qE = 1.30 and vs = 0.25. 

In order to calculate the exponents directly using conformal invariance, we first 
have to calculate the sound velocity U,. This is done from equation (5) (von Gehlen 
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Figare 1. Critical exponents qE and qs against 1/L calculated from the PRG (sizes L and 
L - 3 )  and using the amplitude exponent relations. In (a) the exponent qE=4-2/v  is 
calculated (i)  from Y obtained by the PRO (0) and (ii) using ~ ~ ( 0 )  = (2w/L ) (qJZ)u ,  ( x )  
where ~~isobtainedfrom e s ( 2 w / L ) -  ~ ~ ( 0 )  = (2w/L)u, .  In (6)theexponent q,iscalculated 
( i )  from qE and the amplitude ratio AJAE= q J q E  (0) and (ii) is obtained from ~ ~ ( 0 )  = 
(27r/L)(qJ2)uS with the same V, as in (a) (x). 
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and Rittenberg 1986, Cardy 1986): 

both for energy (singlet) and for spin (triplet) excitations. In this and all subsequent 
analyses of the energy spectrum, the ratio ( h / J 3 )  was set to the exact critical value of 
the infinite system, ( h / J 3 ) ,  = 0.25. The results for U, are presented in figure 2. Both 
the series from the singlet and the triplet levels appear to converge towards a value of 
U, -- 0.42. This is our first indication that the system is conformally invariant. 

E,( k = 2 ~ /  L) - E, ( k  EO) = ( 2 ~ /  L)u, (6) 

\ 
\ 

X 

0.2 I I 1  I I 

1115 1112 119 116 
11L 

Figure 2. The sound velocity os of a conformally invariant system can be determined from 
E,(ZT/L)  - ~ ~ ( 0 )  = ( 2 ~ /  L)u, where a stands either for triplet (spin) (0) or singlet (energy) 
( x )  excitations. The finite-size estimates at the critical point h / J 3 = 0 . 2 5  are shown for 
both types of excitation. They converge towards a limiting value U, = 0.42. 

The central charge c, which for c < 1 determines the quantised set of x, can be 
determined from the finite-size correction of the ground-state energy (Blote et a1 1986, 
Affleck 1986): 

Eo = [Le, - ~ c / 6 L l u ,  (7) 
where e, is the energy density of the infinite system. In order to eliminate e, the 
difference E;/ L - E;'/ L' with L' = L - 3 is calculated. For U, the L-dependent values 
shown in figure 2 are used, both from the singlet and the triplet spectrum. The resulting 
series for the central charge c are shown in figure 3. Both curves suggest that c is very 
close to 1. 

Higher-lying energy levels of the three-spin system can be compared with the 
predictions of equations ( 5 )  as well. Figure 4 shows all the low-lying excitations up 
to = 6/ L. We have selected all singlet and triplet levels with wavevectors k = 0 and 
k = 2 ~ /  L. The extrapolation of the finite-L estimates are consistent with the theoretical 
values of equation ( 5 ) .  Levels above L E L = ~  are difficult to analyse because the 
convergence is much more slow and because the Lanczos method becomes less reliable. 

We conclude that the spectrum of the quantum Ising model with three-spin interac- 
tion is consistent with predictions of conformal invariance, equation ( 5 ) .  Using this 
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Figure 3. The central charge c calculated from the finite-size corrections to the ground-state 
energy. Equation (7)  is used for two sizes, L and L-3,  and U, is taken from figure 2 
(0, spin), ( x ,  energy). The L+CO estimate for c is very close to c = 1. 

----- 
ot , I  I 
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Figure 4. Spectrum of all low-lying excitations LeL ( L e L < 6 )  at the critical point. The 
broken lines connect the singlet (energy) excitations with wavevector k = 0 , 2 7 7 / L ( E O ,  E,) 
and the triplet (spin) excitations with k = 0, 277/ L(S,, S,). The levels predicted from 
equation ( 5 )  for r, r '=O,  1 are indicated for singlet ( x )  and triplet (0) excitations. The 
value U, = 0.42 is used, as estimated from extrapolating the finite L values of figure 2 to L = CO. 
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fact the exponents qE and v s  are calculated. The value of qE is consistent with the 
direct estimate from the PRG. The central charge c is estimated to be very close to 1 
(multispin models which are known to have c = 1 are the Baxter and the Baxter-Wu 
models). While the convergence of the data is sufficient to draw qualitative conclusions, 
it is not accurate enough to clearly identify the universality class for this model. 

We have benefited from interesting discussions with G von Gehlen, V Rittenberg, H 
Saleur and T T Truong. The Deutsche Forschungsgemeinschaft has supported this 
project. 

Note added. After completion of this work, we received a preprint by F C Alcaraz and M N Barber on the 
three-spin king model. Their results differ from ours numerically because they calculate U, from excitations 
in the k = 0 sector, but their conclusions are very similar to ours. 
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